Modern high-rise buildings are equipped with trendy and fashionable entrances and high-speed lifts. However, every entrance and lift door has been carefully designed and configured in order to cope with the stack effect, or otherwise it may be too heavy to open and its purpose may be defeated. Though people may have taken for granted, the basic building features of entrances and lift doors in tall buildings are mechanical engineering principles, which Institution of Mechanical Engineers Hong Kong Branch (IMechE-HKB) was privileged to appreciate in its technical visit to the 530 m tall from ground level Guangzhou CTF Finance Centre at the heart of the provincial capital of Guangdong Province in the mainland China, Guangzhou (CTF Tower), on 28/1/2019.

Nature of Stack Effect

Buildings in all heights, as long as there is indoor-outdoor temperature difference, are subject to stack effect. In winter, an upward buoyancy force is originated by the the outdoor cold air infiltrates into the building on the ground floor and, absorbing heat inside the building and becoming warm air, rises through the lift shaft and exfiltrates out of the building at the higher floors. In summer, in contrast, a downward buoyancy force is generated in the reverse order of winter. Stack effect is not caused by the simple “hot air rises” principle, while its strength is proportional to the building height. The solutions for the summer stack effect are different to the winter stack effect, and the former effect is usually weaker than the latter one. Stack effect in northern China is stronger than southern China.

The 44 storey, 166 m tall 1999 N Broadway in Denver, Colorado, the U.S. is a reference building of stack effect. In winter, the indoor and outdoor temperature is 21
°C and -12 °C has generated a 250 Pa of stack effect driving force on the building. In Hong Kong, according to ASHRAE Handbook – Fundamentals, the lowest and highest outdoor temperature in a year is 9 °C in February and 33.2 °C in July respectively, which translate into the pressure equivalent to the Denver building of 85 Pa for winter and 60 Pa for summer. Likewise in Guangzhou, January at 5.7 °C is the coldest month of a year and July at 34.8 °C the hottest, corresponding to 110 Pa and 68 Pa of the Denver building in winter and summer respectively.

Problematic Stack Effect

Translating the above into CTF Tower, which is championed the fifth tallest building in the globe, the total pressure is approximately 350 Pa each at the top and bottom floor, or the total stack effect driving force is 700 Pa, which can compromise the CTF Tower comfort in various ways:

- Whistling air flow through doors and cracks, which starts occurring at 100 litre per second;
- Difficulty in opening and closing of swing doors and lift doors at 130 Pa and 100 Pa respectively;
- Difficulty in temperature control of the floors with excessive infiltration;
- Increase in building energy costs due to uncontrolled air flow from outdoor;
- Ingress of odours from outdoor;
- Migration of indoor odours.

In most times, buildings are positively pressurised by the heating, ventilation and air-conditioning systems (HVAC), which means that there is a net air flow from outdoor to indoor (i.e. the quantity of fresh air entry is higher than indoor warmed air exhaust). In winter, the positive pressurisation offsets the negative stack effect pressure at the ground floor. On the other hand, the offset pressure at the ground floor is added to the higher floors, exacerbating the positive driving force of the stack effect there. The phenomenon in summer is the opposite of winter. Indoor pressurisation is a solution for one floor and simultaneously an exacerbation for another.

On the exacerbated floors, the pressure exerted on the swing doors and lift doors very often exceeds their respective threshold, causing them unable to open and operate. Also, HVAC finds itself difficult to maintain a uniform predefined ambient for the building. The temperature of certain floors may be too high, and others may be too low.

Live with Stack Effect

Stack effect compromises buildings indoor comfort. While it may be eliminated, it can be mitigated to reduce the frequency and severity of its undesirable effects and issues within the building, actively or passively. HVAC pressurisation with seasonal control is an effective active mitigation, while passive mitigation may be achieved by:

- Adding vestibules doors or walls;
- Using revolving doors;
- Tightening the building envelops, specific doors or vents.
Simple details on doors and accesses could have significant impact on the stack effect mitigation effectiveness. For instance, unshielded drip tray under revolving doors, unsealed gaps between doors and walls and floor as well as loosely installed building façades could induce free air flow into and out of a building, nullifying the mitigation efforts.

For a 530 m tall building in Guangzhou, without mitigation, 350 Pa of pressure at the ground is borne by the ground floor doors at 311 Pa and lift doors at 37 Pa respectively, exceeding their respective operable threshold of 130 Pa and 25 Pa respectively. Improving the façade would result in less air leakage across the floors, dropping the lift door pressure to 20 Pa. Simultaneously, though the lift doors are operable, the pressure acting on the ground floor doors is raised to 330 Pa, which even adding vestibules helps little with the pressure on each vestibule door of 165 Pa still exceeds the 130 Pa threshold.

If only the building ground floor is positively pressurised, the ground floor pressure would fall to about 139 Pa and each of the vestibule door, which is subject to 70 Pa, is operable. This, on the other hand, in turn would raise the lift door pressure to about 201 Pa. Instead, positively and moderately pressuring all floors in the building would suppress the lift door pressure to 15 Pa, whilst the pressure on the ground floor of 70 Pa would be maintained, achieving an optimised arrangement.

Designed to Stack Effect

CTF Tower accommodates offices, serviced apartments and a hotel on its lower, middle and top floors respectively. Its complex lift arrangement with multiple express shuttles and floor access lifts facilitates people movement the most effectively. Apart from the service lifts which stop at all floors, the office, serviced apartment and hotel floors are served by both lift types. In addition, it has operable windows and upper level terraces, and it is subject to summer and winter stack effect mode. As said, 350 Pa stack effect driving force is recorded on CTF Tower.

A 14 day site measurements in March 2017 reveal that between 0 m (L0) and 440 m (L95) from ground level:-

- Overall, L0 is hotter than L95 by 2 °C to 3 °C, except the morning hours until noon when L0 is cooler than L95 by less than 1.5 °C.
- In the coldest day when the outdoor temperature varies from 15 °C to 12 °C between L0 and L95 respectively, the temperature of various lift shafts is higher outdoor by 6 °C to 10 °C and the L0 temperature is higher than the L95 temperature by from 4 °C to 5 °C.
- In the hottest day when the outdoor temperature is about 24 °C across the height, the temperature of various lift shafts deviates from the outdoor temperature from 0 °C to 1 °C, and the temperature difference between L0 and L95 varies from 0 °C to 3 °C.
- In the coldest day, the measured pressure difference between L0 and L95 is about 150 Pa.
- In the hottest day, the measured pressure difference between L0 and L95 is about 60 Pa.
Based upon the above, whereby the temperature difference in winter is larger than summer, the winter stack effect is stronger than the summer stack effect for CTF Tower.

Building Services

The impressive height of 530 m of CTF Tower, which 40th floor is the refuge floor, has given building façade a challenge. The material must be very low in thermal expansion coefficient, or it may extend beyond its scope of coverage and turn a poor appearance for the building. CTF Tower uses Japan-made ceramic tiles, which extra low thermal expansion coefficient maintains the façade in shape in all ambient weather conditions.

CTF Tower is the first development in Guangzhou which uses district cooling. 70% of the cooling demand for the office and retail floors, which latter may accommodate a daily 200,000 times of visit, is met by district cooling. They are backed-up by high pressure air-cooled chillers with their cooling towers located at the ground floor to provide a reserve of 50% of the cooling demand.

The cooling demand of the floors for hotel and serviced apartment is met by four (4) 500 ton class / 1,758 kW Shanghai-made York chillers at “n+1” capacity located inside the plant room. The low temperature-containing installations are insulated by cladded calcium silicate, in spite of elastomeric nitrile rubber material is principally used in China. Heat pump is utilised to supply hot water for these floors.

Bullet Lift

CTF Tower not only is the fifth tallest building in the world, its Hitachi-made specially designed lifts, which commute between the said lift shafts, can reach the world record of upward speed of 20 m/s, or 72 km/h.

The achievement of the world speed record is the simultaneous delivery of safety, comfort and operability in terms of traction and control.

Traction and Control

The advanced drive motor features extra high output of 330 kW, which is attained by large diameter, thin wall stator iron coil inside the drive motor. The very high power density permits the traction system to be confined to within 2,200 mm in the overall length and 1,800 kg of mass. The braking pads are made of high thermal resisting material, dissipating braking energy to over 300 °C, four (4) times more than the preceding highest performing braking pads in Hitachi product range. Also, with the longer travel distance and the minimised traction system size, the suspension ropes must reduce their self weight. Leveraging the refined grain size, the high performance suspension ropes enjoy strength-density ratio 30% higher than the preceding Hitachi models.

Starting a 300 kW double winding drive motor demands 2,200 kVA peak power and 3 kA current; however a current trade converter-inverter (CNV/INV) can output
maximum 1,100 kVA. Utilising the proven technologies, two (2) CNV/INV\s of existing type are configurated in parallel with current differential control to attain the required peak power, while the current demand is satisfied by the dedicated 16 kVA transformers.

Safety

To limit the different ascending and descending speed at 20 m/s and 10 m/s respectively, the over-speed governor of less than 600 mm in breadth comprises of one-way ascendant and descendant governors. When the car descends, the one-way descendant governor clutches with and governs diversion sheaves in clockwise rotation, whereas the one-way ascendant governor disengages with the diversion sheaves. In reverse, however, when the car ascends, the one-way ascending governor clutches with and governs the diversion sheaves in anticlockwise rotation, while the one-way descendant governor disengages. The differential over-speed control is therefore achieved.

The progressive type safety gear requires bringing the descending car in 23 tons of mass at 26.2 m/s to still. The Hitachi proprietarily ceramic-made gripping and counter wedges are able to dissipate 21 MJ of the descending energy at the highest temperature of 800 °C, 4.8 times of the preceding largest Hitachi model, two (2) consecutive times.

Comfort

The car ascending at 20 m/s inside the lift shaft inevitably generates high level noise and atmospheric pressure change, compromising ride comfort. Together with the cabin pressure regulator, the aerodynamic shrouds with the optimised geometries at the top and bottom of the car successfully suppress the car internal pressure variation by 50 % and noise by over 15 dB(a).

Also, to combat the undesired car motions of surge, sway, pitch and yaw when the car ascends at 20 m/s, Hitachi equips the cars with two (2) active vibration suppressors at the car top and two (2) at the bottom, effectively suppressing the unwanted motions by 60 %.

The traction systems and the control panels were individually shop tested, while the safety gear and the car and its accessories and installations were function tested at the top testing speed of 800 m/min, or 13.3 m/s, in the Hitachi in-house 184 m tall testing tower in Japan. The full system was tested in CTF satisfactorily, and raising the ascending speed to 21 m/s has been under active exploration.

Noise Control

Tall buildings of 60 m height or above are susceptible to the stack effect, whereby cold air from outside the building may pass through the landing doors and enter the lift shaft, and escape through openings in the motor room on the building top. Such air movement generates noise at the landing door gaps and turbulent inside the lift shaft. The effective solution is to reduce the air flow, by means of improving the air seal of
the landing doors and the use of the stack effect control measures mentioned above, plus the motor room should be air-conditioned rather than air extraction enabled.

Furthermore, the air below the car is compressed by the descending motion of the car and the air compression generates noise. An effective method to mitigate the noise is to maintain a minimum clearance with the lift shaft in the following tabled order so that the air may divert from the car bottom, plus the lift shaft should have as little profile change as possible:-

<table>
<thead>
<tr>
<th>Car Speed [m/min]</th>
<th>below 150</th>
<th>180</th>
<th>210</th>
<th>240</th>
<th>300/360</th>
<th>420/480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dmin [mm]</td>
<td>standard</td>
<td>450</td>
<td>450</td>
<td>500</td>
<td>630</td>
<td>675</td>
</tr>
<tr>
<td>Wmin [mm]</td>
<td>standard</td>
<td>350</td>
<td>400</td>
<td>400</td>
<td>450</td>
<td>500</td>
</tr>
</tbody>
</table>

Besides, ventilation openings along the lift shaft help reducing the compression of air in the lift shaft, thus alleviating the noise during the car motion.

Remarks

As Hitachi has researched, the trend of building skyscrapers of 500 m to 600 m in height in predominately Asia and Middle East is extending, and China is championing the number of such new developments. Stack effect is worth the mechanical engineers to take into careful consideration in designing HVAC for them, while super or ultra high speed lifts are breaking the records and technical limits. CTF Tower has exhibited to the IMechE-HKB members in the visit the future of commercial towers in China and the Asia region, by which they have been much impressed.

IMechE-HKB thanks Dr. Duncan Philips, Mr. Greg Thompson and Xiang-Dong Du of Rowan Williams Davies & Irwin Inc., Mr. Yosuke Mawamura of Hitachi Elevator
(China) Co., Ltd. and Mr. Daniel Wong of New World China Land Ltd. and his colleagues for their presentation and hospitality.

The technical visit to CTF Tower was reported in Institution News dated 25/2/2019 which can be found on the IMechE website https://www.imeche.org/news/news-article/technical-visit-to-guangzhou-ctf-centre-a-small-change-makes-a-big-difference (see the extraction appended).

*** END ***

All photographs were taken by Mr. Jimmy F.K. Lee with permission to use. Copyright reserved.

WHT
INSTITUTION NEWS

Technical Visit to Guangzhou CTF Centre: a small change makes a big difference

25 Feb 2019
World Bulletin Team

Tiffany Hiu-ching Chan reports on the Hong Kong Branch visit to Guangzhou's Chow Tai Fook Centre and the world's fastest lift

Adjacent to Hong Kong where Hong Kong Branch is based, Guangdong Province of China is a vibrant and thriving economy which contributes the largest share of gross domestic product of the People's Republic.
Its sheer economic development has compelled its provincial capital, Guangzhou, to pursue even greater building heights for satisfying the ever growing appetite for commercial spaces. Standing by the stream of the central Guangzhou Pearl River, and opposite the famous Canton Tower, the Guangzhou Chow Tai Fook Finance Centre (CTF Finance Centre) offers Guangzhou the much needed floors for premium offices, shopping arcade and hotel with its 530 m of height from the ground level, linked by the world’s fastest lift supplied by Hitachi of Japan.

The impressive CTF Centre not only is the fifth tallest building in the world, but also well-known of the marvellous engineering design for minimising stack effect and operating the bullet-speed Hitachi lift at

![View across Guangzhou and the canton Tower from the CTF Finance Centre](image)

20 m/s.

Stack effect, which exists in all buildings, impedes elevator door operability and causes whistling. CTF Centre has optimised door arrangements and heating, ventilating and air-conditioning operating regime to alleviate the frequency and severity of the undesirable stack effect impacts. The Hitachi lift, endowed with state-of-the-art safety, energy and space efficient and passenger comfort features, enables high-speed traveling in skyscrapers, setting a new standard of lift travel.
Mr. Aaron Wong, China Sub-Committee Chairman of Hong Kong Branch who championed the eye-opening cross-boundary visit, remarked,

“Our visit to CTF Centre is the fruit of the kindness and convenience rendered by the host, who is our fellow IMechE member. He once joined one of our technical visits and was impressed by the inspirations of such activities brought to the participants. Leveraging his position in the CTF Centre project, he proactively offered a technical visit to us. We are grateful to him for his hospitality, and this is how all fellow IMechE members can help each other even with small help of ‘open house’. A tip of favour could benefit many.”

We would like to express our sincere gratitude to New World China for inviting RWDI and Hitachi to conduct the inspiring seminars and arranging the memorable site visit and tour.

Read more related articles

Construction and Building Services (/news?topic=construction-and-building-services)
Technical Visit and Seminar
The Institution of Mechanical Engineers

Guangzhou CTF Finance Centre
(K11 Art Mall & Office and Rosewood Hotel)
27 January 2019
We are specialty consultants

Large Range of Projects
- All continents,
- All climates,
- All building types

~500+ employees,
Established in 1972

Large sustainability practice
- 2% of the world's LEED buildings.

We do:
- Air, heat and energy building physics
 buildings ↔ environment
- All climate related impacts:
 - Rain, snow, ice
 - Wind
 - Pollutants
 - Sun – Daylighting / Glare
 - Energy demand
 - Noise
Where We are and Where We’ve Worked

- Thunder Bay
- Calgary
- Victoria
- Vancouver
- Portland
- Guelph
- Ottawa
- Montreal
- Toronto
- Dartmouth
- New York
- Philadelphia
- Windsor
- Miami
- London
- Shanghai
- Trivandrum
- Singapore
- Sydney
Facilities

Four wind tunnels
Water tunnel / flume
High Performance Computing
Instrumentation
 - AQ, noise, thermal comfort, winds, etc.
Large climate database
Custom tools
The lists below are samples – there are others

Cold climates
- Boston, USA
- New York, USA
- Quebec City, CA
- Montreal, CA
- Toronto, CA
- Chicago, USA
- Seattle, USA
- Seoul, KO
- Harbin, CN
- Shanghai, CN
- Beijing, CN
- Guangzhou / Shenzhen, CN
- Kuala Lumpur, MY
- Dubai, UAE
- Moscow, RU
- London, UK

Hot climates
- Boston, USA
- New York, USA
- Quebec City, CA
- Montreal, CA
- Toronto, CA
- Chicago, USA
- Seattle, USA
- Seoul, KO
- Harbin, CN
- Shanghai, CN
- Beijing, CN
- Guangzhou / Shenzhen, CN
- Kuala Lumpur, MY
- Dubai, UAE
- Moscow, RU
- London, UK

Existing Buildings
- Boston, USA
- New York, USA
- Montreal, CA
- Toronto, CA
- Chicago, USA
- Edmonton, CA
- Seattle, USA
- Los Angeles, USA
- Shanghai, CN
- Guangzhou, CN
- Astana, KZ
- Dubai, UAE
- London, UK
STACK EFFECT IN TALL BUILDINGS

Redefining possible.

Duncan Phillips, Ph.D., P.Eng, Principal
Greg Thompson, M.A.Sc., Principal
Xiangdong Du, Ph.D., P.Eng, Principal
Best Practice

Rowan Williams Davies & Irwin Inc. (RWDI) is a Registered Provider with the American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, **it does not include content that may be deemed or construed to be an approval or endorsement by the AIA** of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.
Acknowledgements/Credits

The work presented here represents the efforts and contributions of many bright and committed people at RWDI.
Outline

What is stack effect?
• The stack effect driving force
• Stack effect impacts & issues in buildings

The neutral plane

Effects of building pressurization

Managing stack effect in buildings
It does not happen because “hot air rises”

Stack effect is a phenomenon that can exist in all buildings and is induced by the buoyancy force originating from indoor-outdoor temperature differences.
It does not happen because “hot air rises”

Stack effect is a phenomenon that can exist in **all buildings** and is induced by the buoyancy force originating from indoor-outdoor temperature differences.

- The solutions for summer stack effect are different from winter stack effect.

- Typically the summer driving forces are weaker.

Summer Stack-Effect Driven Airflow
What is Stack Effect?

1999 N Broadway

Denver, Colorado

• 44 stories
• Height: 166m / 548 ft
• Outdoor Temperature: -12°C / 10°F
• Indoor Temperature: 21°C / 70°F
• Moderately Tall
• Cold Winter Day (not extreme)
• Building has a ~250 Pa (~1") stack effect driving force.
Visualizing Stack Effect in a Tall Building

Stack effect can play a strong role in smoke transport.

Remember a ~250 Pa (~1”) stack effect driving force.

Approximately 125 Pa on this door.
Hong Kong

Winter 99.6 = 9.0°C
Summer 0.4% = 33.2°C

Pressures for equivalent Denver building
- Winter = 85 Pa
- Summer = 60 Pa
Guangzhou

Winter 99.6 = 5.7°C
Summer 0.4% = 34.8°C

Pressures for equivalent Denver building
- Winter = 110 Pa
- Summer = 68 Pa
Potential Stack Effect Impacts

There are many potential impacts

- Whistling airflow through doors and cracks
- Difficulty opening and closing of doors
- Difficulty controlling temperatures on some floors with excessive infiltration
 - Cold at the bottom
 - Hot (humid) at the top
- Elevator door operability issues & whistling
- Increased building energy costs due to uncontrolled airflow from outdoors
- Ingress of odors from outdoors &
- Migration of odours indoors

Often from unit to unit in residential
Imagine two tubes: one filled with air and one filled with water.

The weight of the air in the column is less than the weight of the column of water.
Imagine two tubes: one filled with air and one filled with water.

Now connect them at the top and bottom.

And add a little magic.

Air is instantly turned into water.

In winter, this is the outdoors.

In winter, this is the building.

Water is instantly turned into air.

Real buildings are more complex than this but this is how the pressure differences are established.
Stack Effect Pressures

The CTF Tower Pressures are approximately 350 Pa total.

That would be ~175 Pa at the top and bottom.

Remember the video? That was 250 Pa.

\[
\Delta P = 700 \text{ Pa} \quad (\Delta P = 14.6 \text{ psf})
\]

\[
\Delta P = +350 \text{ Pa} \quad (+7.3 \text{ psf})
\]

\[
\Delta P = -350 \text{ Pa} \quad (-7.3 \text{ psf})
\]
Stack Effect Driving Force

Pressure Difference (Interior to Exterior): 1 – 3 inches water
250 – 750 Pa
5.2 – 15.7 psf
Stack Effect Pressure Issues

Motorized swing door with airlock (two sets of doors) Revolving Door

1 set of frameless glass doors - 350 Pa on doors = approximately 80 lb force to open each door
Criteria

How do we judge ‘problematic’
Criteria for Determining Acceptability

Difficulty opening and closing of swing doors
Operability threshold = 30 lb force to set in motion
= 130 Pa (2.8 psf)

Elevator door operability issues
Operability threshold = 25 Pa (0.5 psf)
This is difficult to define precisely as sometimes 100 Pa is ok

Whistling through doors
We define a threshold at 100 L/s = 200 cfm

The HVAC system cannot keep up:
• Some areas are too hot;
• Some areas are too cold; and
• Balancing the HVAC system is a problem.
In this case, there are both elevator operability problems and door pressure issues.
Where and what is the Neutral Plane
Winter: Large Opening @ Top

\[\Delta P = \text{Indoor} - \text{Outdoor} \]

Neutral Plane

Large Opening

Diagram showing pressure difference with respect to height and pressure.
Winter: Large Opening @ Bottom

$\Delta P = \text{Indoor} - \text{Outdoor}$

Neutral Plane

Large Opening
Winter: Distributed Openings

Real buildings have distributed openings over height

ΔP = Indoor - Outdoor

Neutral Plane
Summer: Distributed Openings

ΔP = Indoor - Outdoor

Neutral Plane

Hot outside
Effect of Building Pressurization
Building Pressurization through HVAC:

Net Airflow Rate = Fresh Air – Exhaust

Most buildings are positive.
Some are negative

This can be a problem!
Winter: HVAC Positive Pressurization

Neutral Plane
Winter: HVAC Positive Pressurization
Summer: HVAC Positive Pressurization

Neutral Plane
Summer: HVAC Positive Pressurization

Neutral Plane
Managing Stack Effect
Managing Stack Effect

What is the Design Goal?

The goal is to “reduce the frequency and severity of undesirable stack effect impacts and issues within the building”

It is not to “get rid of stack effect”

• It is possible to get rid of stack effect – that is a different discussion
Example Problem

Managing Stack Effect – 80 Storey Building
- Winter ground floor lobby
- Similar to an outdoor deck at the top of a building in summer
Passive Mitigation:
- Tightening the building envelope, specific doors, or vents.
- Adding vestibule doors or walls
- Using revolving doors

Active Mitigation:
- HVAC pressurization
 Including seasonal control
Mitigation Example

No Mitigation

The total pressure at the ground floor is 350 Pa.

The total pressure at the ground floor for a 530m building in Guangzhou is 175 Pa.

Exceeds threshold 130 Pa (6.5 psf)

37 Pa across elevator doors > 25 Pa (0.8 psf)
Mitigation Example

Improve Façade Air Leakage Specification

Exceeds threshold 130 Pa (6.9 psf)

20 Pa across elevator doors < 25 Pa (0.4 psf)
Mitigation Example

Adding Vestibules

Exceeds threshold 130 Pa (3.4 psf)

20 Pa across elevator doors < 25 Pa (0.4 psf)
Mitigation Example

Positively Pressurizing the Ground Floor only

201 Pa across elevator doors >> 25 Pa (4.2 psf)

Ok < 130 Pa (1.5 psf)

+++ Fresh Air
Mitigation Example

Positively Pressurizing all floors

15 Pa across elevator doors < 25 Pa (0.3 psf)

Ok < 130 Pa (1.5 psf)

+ Fresh Air
Challenges with Mitigation

It is like trying to plug a leaky dam

- Solving one stack effect issue can result in the creation of a new issue somewhere else in the building.
- It is important to understand pressures and air leakage through the whole building, not just individual floors.
- Different types of buildings require different types of solutions (e.g. residential, commercial, hotel).
Example Mitigation
Airlock Doors Used

Shanghai World Financial Center
The drip tray under this revolving door was not partitioned.

Air can flow freely underneath the door.

Sometimes the doors and enclosures have cracks / gaps.
A Famous Building had Gaps in Rotating Doors

We have seen rotating doors where the leafs do not touch the outer shroud.

Before – large gaps

After – gaps sealed
Basement Entrances are Important

Very large gap under doors between underground parking and service elevator lobby

We tend to assume the basement garage is outdoor space
Case Study - Shanghai

Existing Building
Temperature in the city drops to -2.0 °C (~28°F) – ASHRAE 99.6

Building 1

Building is a 40 story office building
- Operable windows
- Three lift cores (L, M, H)
- Access to outside on upper levels

Issue is that the high rise lifts shuttle would not operate under semi-cold conditions
- Would fail at ~5°C (~40°F)
- Building operations keeps two H-lifts open on lobby floor to enable operations
Building is Not Tall

Forty (40) storey building

Nothing particularly strange about the building

3 Lift banks
- low rise, mid-rise, high-rise

Lifts to highest floors do not work on “cold” days
- Building operations puts two (2) lifts out of the five (5) on hold-open in order to get the others to work
Some Component Problems

The doors did not seal well.

- The façade took up ~25 Pa
- The lift doors took up ~40 – 70 Pa
Some Construction Problems

L1 - Thermal Image of Façade Above Rotating Door

Mullion conduction (expected)

Cold plume at façade (not expected)

Mullion conduction (expected)

Cold plume at façade (not expected)
Obvious Solutions

Seal the façade
• How do you seal a façade where you do not have access to all of the surfaces?

Create a vestibule for the HR Lifts
• Does this move the problem?
A Vestibule for Some Lifts Moves the Problem

- Putting a rotating door / vestibule for the high-rise lifts would solve that problem
- The consequence is the pressure on the mid-rise lift doors would increase
- The mid-rise lifts would stop working
- Therefore, two sets of vestibules are required.
Solutions

Seal the façade
• A clear problem, but not a definitive solution

Create a vestibule for the HR Lifts
• Solves the problem for the HR lifts
• Creates a new one for the MR lifts

Make a hole in the HR lift shaft wall
• A non-standard approach, but resolves the operational problem
• Likely would have some code issues to resolve in some places
CTF Tower

Existing Building
CTF is a Super Tall Building in Moderate Climate

- Building is ~530m
- Has multiple express shuttles and complex lift arrangement
- Operable windows and upper level terraces
- Experiences summer and winter stack effect mode
- Pressures on lift doors high
- Lower part of building heated / cooled once floors occupied
- The design stack effect driving force is ~350 Pa
Temperature Conditions Top and Bottom

March 2017

The image to the right shows outside temperature at the top and bottom of the building.

The lower image shows the temperature difference.
March 2017

The upper image shows the pressures measured at the top and bottom of the building.
Measured Lift Shaft Temperatures

Coldest Day

<table>
<thead>
<tr>
<th>Temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE</td>
</tr>
<tr>
<td>400+</td>
</tr>
</tbody>
</table>

Hottest Day

<table>
<thead>
<tr>
<th>Temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE</td>
</tr>
<tr>
<td>400+</td>
</tr>
</tbody>
</table>
Pressure Differences

Outside Temperature = 15°C
Pressure should be 130 Pa total

Coldest Day

Hottest Day

Outside Temperature = 23°C
Pressure should be 60 Pa

HS HS

Pressure Difference [Pa]

Pressure Difference [Pa]
• The outside temperature profile is coldest.
• The temperatures in all shafts drop with altitude except the office-lifts
• The temperature differences from the shafts to outdoors shows that the HE lift shaft is the coolest.
 • Slope of the HE-pressure difference is the steepest
 • Lowest temperature difference
Hottest Point in Time: Was in Evening

- All shafts are cooler than outdoors except the office lift.
- All shafts show ‘reverse’ / summer stack effect mode except the office lift.
 - The normal mode office shaft stack effect is weak (almost a vertical line)
 - The temperature difference between this shaft and outdoors is low.
Typical Pressures at the Lobby Level

80 Pa
Typical Pressures at the Top Level

200 Pa
The large openings at the bottom of CTF draw the NP down.

\[\Delta P = \text{Indoor} - \text{Outdoor} \]
Conclusions
Conclusions

Stack effect can exist in all buildings

The driving force (strength of stack effect) depends on
Building height
Temperature difference

We can’t totally get rid of the driving force but we can reduce negative impacts through design
Thank you for your time and attention.

Duncan Phillips, Ph.D., P.Eng
Building Performance Group
Duncan.Phillips@rwdi.com